Development and Implementation of a Self-Building Global Map for Autonomous Navigation
نویسندگان
چکیده
(ABSTRACT) Students at Virginia Tech have been developing autonomous vehicles for the past five years. The purpose of these vehicles has been primarily for entry in the annual international Intelligent Ground Vehicle Competition (IGVC), however further applications for autonomous vehicles range from UneXploded Ordinance (UXO) detection and removal to planetary exploration. Recently, Virginia Tech developed a successful autonomous vehicle named Navigator. Navigator was developed primarily for entry in the IGVC, but also intended for use as a research platform. For navigation, Navigator uses a local obstacle avoidance method known as the Vector Field Histogram (VFH). However, in order to form a complete navigation scheme, the local obstacle avoidance algorithm must be coupled with a global map. This work presents a simple algorithm for developing a quasi-free space global map. The algorithm is based on the premise that the robot will be given multiple attempts at a particular goal. During early attempts, Navigator explores using solely local obstacle avoidance. While exploring, Navigator records where it has been and uses this information on subsequent attempts. Further, this thesis outlines the look-ahead method by which the global map is implemented. Finally, both simulated and experimental results are presented. The aforementioned global map building algorithm uses a common method of localization known as odometry. Odometry, also referred to as dead reckoning, is subject iv to inaccuracy caused by systematic and non-systematic errors. In many cases, the most dominant source of inaccuracy is systematic errors. Systematic errors are inherent to the vehicle; therefore, the dead reckoning inaccuracy grows unbounded. Fortunately, it is possible to largely eliminate systematic errors by calibrating the parameters such that the differences between the nominal dimensions and the actual dimensions are minimized. This work presents a method for calibration of mobile robot parameters using optimization. A cost function is developed based on the well-known UMBmark (University of Michigan Benchmark) test pattern. This method is presented as a simple time efficient calibration tool for use during startup procedures of a differentially driven mobile robot. Results show that this tool consistently gives greater than 50% improvement in overall dead reckoning accuracy on an outdoor mobile robot. v Acknowledgments I would like to acknowledge and thank God, the only creator of truly autonomous agents. As committee chairman, Professor Charles Reinholtz always treated me with respect and encouraged me to think creatively. Despite his many impressive professional achievements, he makes everyone feel as though they …
منابع مشابه
Navigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملSelf-Localisation and Autonomous Navigation by a Mobile Robot
This paper provides an overview of a three year project conducted on the subject of self-localisation and autonomous navigation by a mobile robot. The research was carried out in two stages: Self-Localisation. Due to the fundamental unreliability of dead reckoning, landmark-based methods were investigated. Several related issues were addressed, including performance evaluation, replication and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001